

Actian DataFlow

Accelerate Analytic Data
A Technical Overview

 2

Contents
Executive summary .. 3

The Promise and Challenge of Hadoop.. 3

Accelerating Hadoop with Actian .. 4

Automate Execution Optimization ... 5

Scale up, Scale out ..5

Automatic runtime thread availability detection.. 6

Data flow design principals .. 7

Pipeline parallelism, data parallelism and in-memory processing 9

Illustration: ... 10

Analyze ALL the Data.. 11

Enhance Data with Multiple Data Sources .. 13

Broad and Extensible Connectivity Options ... 13

Join heterogeneous data ... 14

Fuzzy matching to weed out duplicates ... 15

Data Transformation .. 15

Data Profiling and Cleansing ..16

Analytics on Hadoop ..16

Analyze ALL types of data .. 17

Bypass choke points in the analytic cycle ..17

Prepare ..18

Develop ...19

Deploy ..19

Execute ... 20

Audit.. 20

ALL the way from end to end ... 21

Be a good enterprise citizen .. 22

Platform agnostic .. 22

Actian Analytics Platform.. 23

Enterprise architectures ... 24

Other data preparation and analytics tools ... 24

Conclusion .. 25

 3

Executive summary

Hadoop holds tremendous promise for large scale data management and data
analytics projects that could be of huge benefit to many enterprises. However,
Hadoop has limitations and difficulties of use that cause many projects to fail.
These include the need for rare and expensive skillsets, inadequate execution
speed, long implementation cycles, and extreme difficulty of incorporating
other datasets. Actian DataFlow solves these challenges with a scale-up, scale-
out architecture, automatic workload optimization, pipeline parallelism, and a
wide range of pre-built operators in a easy-to-use, visual interface. Actian
DataFlow provides unmatched price/performance and due to platform
agnosticism, fits into most enterprise architectures with ease.

The Promise and Challenge of Hadoop

“Hadoop is a component, not a solution.”
– Robin Bloor, The Bloor Group

In the modern world, dozens of new data sources are coming at the corporate
world faster than the technology can keep up. Hadoop has been at the heart of
many modernization efforts. Hadoop offers unlimited scalability, the ability to
handle virtually any kind of data, regardless of structure, and a
price/performance level that is orders of magnitude better than previous data
management technologies. But, Hadoop has five drawbacks that have
hampered its adoption in many enterprises, and even caused the failure of what
should have been high ROI analytics projects.

1. Hadoop requires highly skilled developers with a deep understanding of
the complexities of building parallel programs, specifically in the
MapReduce paradigm. The difficulty level of parallel and distributed
programming means that these human resources have proven to be
scarce, very expensive, and difficult to either find or train.

2. The implementation cycle, the time between identifying a business
problem that Hadoop data might solve and when actionable outputs
can be reached, is often prohibitively long. The skillsets needed to design
good analytics or any good business solutions that use the data stored on
Hadoop, and the skillsets needed to work on Hadoop are rarely found in
the same people. It can take a large team, a lot of back and forth iteration
cycles, and a lot of coding time to come up with a usable solution. By
then, the business may have moved on, and the answer may not even be
useful anymore.

3. The performance speed of data crunching activities on Hadoop are
surprisingly slow. Hadoop provides a tremendous leap forward in
price/performance over traditional data warehouse and appliance

 4

models, as well as unlimited scalability, but the MapReduce parallel
programming paradigm was only designed to do specific tasks well, such
as text search. Once you move beyond the specific tasks it was designed
for into more sophisticated data processing, it bogs down enough that
response times become unacceptable for most business applications.

4. Enhancing Hadoop data with other data sources is prohibitively difficult.
Even in modern enterprises that have embraced this new technology, the
projects done on Hadoop are often done in isolation from the rest of the
enterprise. Joining and enhancing data stored in Hadoop with other
sources is rarely even considered. MapReduce was only designed to
process Hadoop data.

5. Inconsistencies across Hadoop distributions. Individual Hadoop
distributions each have their own approach to providing SQL access to
Hadoop data. They all have performance and scalability challenges to
varying degrees, don’t fully support the SQL standards (although they are
getting better), and don’t support efficient singleton updates for
operational workloads.

Accelerating Hadoop with Actian

Actian DataFlow™ works in a complementary way with Vector to address those
weaknesses. DataFlow is a critical component for improving data load times,
and for orchestrating, managing, and optimizing query execution that takes
maximum advantage of Vector’s fast processing capabilities. It does this without
requiring any parallel programming expertise at all, Actian DataFlow speeds
data processing on Hadoop clusters from 2X to 100X, or more, and vastly
reduces implementation cycles from end to end, often saving businesses several
months. Actian DataFlow provides three main advantages over working with
Hadoop directly via MapReduce, or other intermediate code generators.

First, Actian automatically accelerates data processing execution speed on
Hadoop, without requiring additional skills or additional work of any kind. This
speed of execution allows preparation and processing of virtually unlimited
volumes of data in reasonable timeframes – removing the need to take small
samples for the sake of the software, not the science. This allows for more in-
depth analyses with greater degrees of freedom, and higher levels of confidence
in the accuracy of results.

Secondly, Actian enhances Hadoop data with data from a wide variety of other
sources. High speed connectivity options to nearly any data source and the
ability to join heterogeneous data allows analysis of multiple data sources
simultaneously. This provides the data needed for greater context in business
solutions, providing that 360-degree view that can be so valuable. This can
provide more meaningful results, and often much higher lift from actions taken

 5

from the analyses of that data.

And finally, Actian vastly shortens the time-to-value in analytics projects. Various
aspects of Actian DataFlow, from the drag-and-drop simplicity of the interface
to the automatic data flow based parallel optimization of the underlying
framework shorten the entire data management and analytics process
eliminating each choke point that slows down traditional approaches. This
provides a far faster path from the moment a new analytics need is identified, to
the point when it can be acted on to improve the business outcome.

By letting you use ALL of your Hadoop data, Actian provides higher accuracy. By
allowing you to use ALL TYPES of data in your enterprise environment, Actian
provides better analytics context. And by addressing all the worst chokepoints in
the analytics process from end to end, Actian provides the best time-to-value
possible.

Automate Execution Optimization

“Analytical latency reduction is Actian’s number one
advantage. Speed equals value as long as you get the

answers right.”
– Robin Bloor, The Bloor Group

Actian DataFlow automatically optimizes workflows for extremely high
execution speed on Hadoop clusters or any multi-core or cluster environment.
DataFlow does this by making maximum use permitted of all available
hardware. As hardware potential is increased, performance speed also increases
at a near-linear scale. This does not require the user to know anything about
parallel programming. The underlying DataFlow engine framework
automatically handles the parallelization and optimization aspect.

Understanding how DataFlow automatically optimizes parallel data processing
is the key to understanding how DataFlow achieves the highest
price/performance possible.

Scale up, Scale out

The roots and patented IP of Actian DataFlow pre-date the cluster computing
revolution. When DataFlow, then known as DataRush, was first begun, the goal
of the project was to make optimum use of the new multi-core style of
computers. This was about the time that dual-core machines were starting to
become the standard. So, originally, DataFlow was designed to scale up on a
single computer, taking full advantage of all cores and threads available on a

 6

single machine up to a settable limit, whether that was 2 or 256.

The focus of development efforts was on gaining near-linear scaling. If a
program was executed on a 4-core server in 10 seconds, that same program
should, without any alteration, execute on an 8-core server in approximately 5
seconds and a 16-core server in approximately 2.5 seconds. This goal was
achieved.

Later, as it became clear that Hadoop and distributed cluster computing would
soon become the standard for handling large datasets, the ability for DataFlow-
based applications to scale out to multiple nodes on a cluster was added. When
YARN first began to be available, the ability to share resources on a Hadoop
cluster through that channel was immediately added.

This history means that DataFlow will make maximum use of each individual
node on a cluster, and then make optimum use of all the nodes on a cluster.
Because DataFlow is thread parallel at its base, this makes it more efficient than
process-based parallelism such as MapReduce. Dataflow will always provide
better machine utilization at the node level. DataFlow will both scale up and
scale out.

The answers to, “How does it do that?” are below.

Automatic runtime thread availability detection

The first contributor to both Actian DataFlow’s simplicity of development and
execution speed is the built-in automatic detection of available compute power.
As mentioned above, in the early days of DataFlow’s development, DataFlow’s
purpose was to take advantage of the new multi-core servers. Since, there was
no telling how many cores would eventually become the norm, one of the first
capabilities built into DataFlow was the ability to detect hardware core and
thread availability. The ability to then expand that to detect all cores, threads,
and nodes available in a cluster was later added without much difficulty since
the two capabilities are very similar.

This automatic compute power availability assessment is done at runtime. This
may not seem that important at first, but it means that a workflow only needs to
be developed once, and will always be optimized for its particular environment
in a “just in time” manner. The design can be created or tested on a 4-core
laptop, a 16-core server, or a 3000-node cluster. That same design can be
deployed on any of those environments, without any re-design, tweaking, or
other performance optimization work. And, in a year or two, if the 3000-node
cluster becomes a 6000-node cluster with the new nodes each having double
the cores of the old nodes, the workflow will simply, when the application is run,
detect the increase in hardware availability and execute that much faster.

 7

The next logical question is, once DataFlow auto-detects hardware power
availability at runtime, how does it then take advantage of it without anyone
having to modify the application?

Data flow design principals

Part of the power of Actian DataFlow is that it is based on a data programming
paradigm known, not too surprisingly, as data flow. This concept pre-dates the
Actian DataFlow framework, and is used in many other applications, such as
high-performance computing.

The data flow programming paradigm essentially conceives of all applications
as a series of nodes and edges. To avoid confusion with computers in a cluster
which are also called nodes, I’ll refer to data flow nodes as operators. The
operators are units of data processing that start with one or more data inputs
and ends with one or more data outputs. Each operator performs one specific
task, such as reading a particular type of data from disk to memory,
transforming one data type to another, joining one dataset with another,
evaluating statistics such as mean or range, or finding unique values in a
column. These individual functions are not limited to the basic tasks like a
mapper or reducer. Even a sophisticated algorithm such as a decision tree
machine learner or predictor can be a single DataFlow operator.

Each one of these operators represents a function in an end-to-end application
sequence called a data flow or Directed Acyclic Graph (DAG). I generally refer to
this as a workflow to avoid technology specific terms. An Actian DataFlow
workflow usually begins with access to a data source, such as HDFS or HBase or
an RDBMS, and ends with some sort of output. Whether that output is more
data, a PMML file that can be passed to another application for additional
analysis, or some sort of prediction, or automated action, that is entirely up to
the person building the workflow.

The edges are the connections between the output of one operator and the
input of the next. They determine what happens first, next, etc. and how the
different operators relate to each other.

This concept of selecting operators, then stringing them together into workflows
is extremely simple for developers, and even non-developers when given an
interface, to learn and use.

 8

These operators don’t specify HOW a job will be done, but WHAT job the
developer wants to do. Below is an example Actian DataFlow workflow.

Each operator has configuration properties which specify details about that
particular task. For example, a “Limit Rows” operator will contain a simple
Boolean expression that indicates which rows are desired, and which ones
should be discarded. A “K-Means” operator would specify how many clusters,
maximum number of iterations, the columns to consider, and the type of
distance measurement, Euclidean or cosine similarity. A “Missing Values”
operator will contain information on what to do if a missing value of a particular
data type, or field name is encountered, whether replace with a default value, or
discard the row, etc. In this way, extremely complex workflows can be designed
very simply.

The DataFlow framework, at runtime, detects how much hardware power is
available. It then creates a far more complex version of the original directed
acyclic graph, which specifies how each individual operator will be parallelized,
as well as optimal parallelization of the workflow as a whole.

 9

Understanding how this works is useful, but since this parallelization is all done
by the framework, it’s not something that the person developing or executing
the workflow has to be concerned with. It is also worth noting that the same
type of parallelization will be done, regardless of whether the graph is executed
in a single machine or in a cluster.

It should be clear how this style of programming makes development much
faster than if the designer had to handle all the tasks of optimally parallelizing
workflows manually for each hardware configuration. It also means that a less
skilled programmer, or even a nonprogrammer subject matter expert can still
create extremely efficient flows that execute at very high speed. There is another
aspect of the Actian DataFlow framework that also has a big impact on
execution speed.

Pipeline parallelism, data parallelism and in-memory processing

MapReduce and most other parallel programming paradigms are ideal for
handling jobs that are “embarrassingly parallel.” These jobs essentially involve
working on large data sets that are broken into pieces, processing each data set
in parallel, then bringing the results back together. This is also known as data
parallelism because the same job is done on multiple pieces of data
simultaneously.

That is the essence of the map and reduce paradigm. Break the data up, push a
processing function (like a data flow operator but generally much simpler) out
to that data, read each data chunk off disk, do the processing, push the answer
back to a single location, write the answer to disk, then do the next step. This is
an extremely efficient paradigm for embarrassingly parallel processing tasks on
large data sets in a distributed environment.

Another way to vastly speed up data processing is to read ALL the data into
memory first, then do all the processing steps needed on that data, then write
the result to disk. This is far faster than the MapReduce concept of read, do one
simple function, write to disk, do the next function, but it doesn’t scale
anywhere near as well. First, there is a high up-front overhead as huge datasets
are read all at once from disk to memory, then the limits of RAM in even the
most powerful systems can get strained when multiple complex operations are
done on a large dataset. When really compute intensive jobs such as full table
scans, sorts, fuzzy matching for de-duplication, and complex analytics
algorithms are applied, this, otherwise brilliantly fast method, can choke on
insufficient resources and die.

Actian DataFlow does employ data parallelism, just like MapReduce. It does
break up data processing tasks and push them out to the various chunks of data
in a distributed file system like HDFS, so it gains an equal speed advantage for
that type of parallel processing as MapReduce.

 10

However, it also gains much of the speed advantage of in-memory processing
without the tendency to overwhelm RAM resources. It does this by employing a
second type of parallelism in addition to data parallelism, pipeline parallelism. In
pipeline parallelism, multiple functions are executed simultaneously.

To understand pipeline parallelism, it helps to think of the RAM in a server or
cluster as the conveyer belt in an assembly line, and the CPU’s as workers doing
various tasks as the data flows past. Instead of the up-front time cost of reading
all data off of the disk into memory, a single chunk, such as a row or column, of
data is read, then that chunk is passed to the next function task in the workflow.
The second function is being executed on the first data chunk in memory by
another thread, while the second data chunk is still being read off the disk. Then
when a third chunk is read, the first chunk has already moved on to the third
function in the workflow, and the second chunk is on the second function in the
workflow, keeping three CPU’s working at once. By the time the last chunk of
data has been read, most of the data has already been processed and written
out to disk.

This also means that only the records currently being processed are held in
memory, and only the compute tasks needed on those particular pieces of data
are being done, also in memory and simultaneously. When all tasks are done on
a particular chunk of data, the answer is written out, and that data discarded
from memory, making space for more data and processing. That data,
essentially, falls off the end of the assembly line.

Illustration:

If you return to the previous illustration showing the conversion of design graph

 11

to a physical graph, you can see that all of the steps in that workflow were
carried out in memory, with the exception of the read, the write and the Group
step, which required that data be written to disk and reshuffled. This is a fair
representation of most DataFlow workflows.

This combination of both data and pipeline parallelism gives DataFlow
performance speed that far exceeds MapReduce, and approaches in-memory,
without the in-memory costs or dangers. (If this sounds like Apache Spark to
you, see Appendix II for a detailed comparison.)

Analyze ALL the Data

Accuracy is the number one advantage gained by being able to crunch more
data in the same amount of time.

Reducing the need for sampling is one way to increase accuracy. Increasing the
degrees of freedom, the number of variables an analyst can consider, is another
way. Increasing sample size can immediately increase a statistician’s level of
confidence in data analysis results and can help with more accurately training
machine learning algorithms.

“Doing away with sampling would be a massive boon
to analytics. The more datasets grow over time, the
more sampling is required, and the more radically

sampling skews the results.”
– Krishna Roy, 451 Group

Iterating through and systematically tweaking an analytic model a dozen or
even hundreds of times to refine it can be another way to improve accuracy.
Fast processing speed makes this much more practical. Refining a model until
the statistician is genuinely happy with it can make for a far more confident and
accurate model in the end. More on that later, in the section on shortening the
whole analytics process.

Another big accuracy boost from data processing speed comes when a
statistician can include more columns/features/variables into their data analysis.
For a greater number of variables to be analyzed with confidence that the
results are accurate, a much larger overall volume of data needs to be analyzed.
The sample size must be far larger in order to allow more degrees of freedom

 12

without reducing confidence levels in the prediction.

Many data scientists would be delighted to do highly multi-variant analysis, and
many of the data sets stored on Hadoop are large enough to support it.
Software processing time should no longer hold them back. Some analysts
assume that it is the hardware holding them back. In many cases, the
“hardware limitations” are really limitations caused by poorly optimized
software.

Example: Actian used a machine learning algorithm to predict
customers likely to churn soon from a Telecommunications
company’s call detail record data. With the limited sample size
legacy software could process, only 19 columns of the data could be
analyzed. Choosing what seemed to be the best indicators, only
about 500 potential churn customers were identified. With Actian
DataFlow, a far greater sample size could be analyzed in the same
amount of time on the same hardware, allowing the data scientist
to include 15 more variables. This new data combined with the
original 19 variables allowed the algorithm to accurately identify
about 14,000 customers likely to churn. The additional variables
were very valuable for eliminating possible false positives with surety.
At an average cost to a Telecom company of $500 per customer
acquisition, the 13,500 churning customers not accurately identified
by the previous software could mean a cost to the company of as
much as $6.75 million.

(Done on a known test dataset with 16,000 true positives. Dataset
available upon request.)

(Variables above the “churn” line on the list to the right were used for legacy
analysis, additional variables below churn line were added for the second
analysis.)

 13

Enhance Data with Multiple Data Sources

“Actian allows businesses to run their business on
data not instinct.”
– Robin Bloor, The Bloor Group

One of the problems that face enterprises ready to embrace Hadoop as part of
their enterprise information management architecture is that Hadoop and
MapReduce do not generally work and play well with others. Hadoop users
often say, there’s no such thing as a “join” in Hadoop, despite the function
existing in Hive, due to the limited utility of the function. While an inexpensive
way to store and process data is hugely useful in an enterprise architecture, yet
another large, isolated data silo is not.

The best possible way to use the data stored in Hadoop would be as if it were
simply another data source to feed analytics. In order to do that, a data
management tool that CAN efficiently join Hadoop data with other types of
data is needed. Once various joins or lookups or other forms of data merging are
accomplished, the problem of duplicates has to be elegantly dealt with.

In addition, Hadoop data is notoriously filled with a high percentage of “noise” or
non-useful data, and has none of the data quality profiling and cleansing
routines applied to it that are so essential to making other types of data useful.
Even in Hadoop, “garbage in, garbage out,” still applies.

Actian DataFlow addresses these issues in several ways.

Broad and Extensible Connectivity Options

The pre-built Actian DataFlow operators that I mentioned in the previous
section provide a wide variety of functionality. Each operator does one specific
thing and does it very well in parallel and distributed compute environments.
One set of operators are the I/O readers and writers. These, of course, include
connectivity to HDFS and HBase, but they also include parallel read and write to
a variety of other formats. Virtually any RDBMS can be read and written to with
DataFlow through JDBC, as well as text formats such as delimited, log files and
sparse data.

Beyond that, DataFlow smoothly integrates with Flume, Sqoop, Storm, Kafka
and other Hadoop projects to handle streaming data sources, and, of course,
integrates with Actian DataConnect to read and write from nearly every other
data source on earth, including on-premise and cloud-based application API’s,
web services, and hierarchical data like XML and EDI.

 14

And, if that isn’t enough, the Actian DataFlow programming framework can be
used by any competent Java, Scala, Jython, or other JVM supported language
programmer to create new reader and writer components. These can be
dropped right into DataFlow workflows right alongside the pre-built operators.

Join heterogeneous data

At a recent Strata conference, a presenter said that on Hadoop, joins were
simply not an option. Most of the audience simply nodded in agreement. Hive,
Pig and other Hadoop tools that generate MapReduce under the covers,
support joins on Hadoop, but they can be difficult to implement, and limited in
functionality. MapReduce-based joins, regardless of how they are generated, are
notorious for overloading the memory cache on Hadoop clusters. And they are
not designed to pull data from other sources outside of Hadoop. At Actian, we
do joins on Hadoop all day long. A recent proof of concept for a new project
with a long-standing customer involved more than a hundred joins in a single
workflow, not counting the internal joins that were done in SQL as the data was
pulled from various databases.

Actian DataFlow is not dependent on MapReduce, whether on the surface or
under the covers, to manipulate data, so it is free to manipulate non-Hadoop
data and Hadoop data at the same time. It is not limited to the Map and
Reduce paradigm for data manipulation, and it uses pipeline parallelism, which
is more memory efficient in general.

In DataFlow, there are pre-built operators for standard joins, cross joins, semi or
anti-joins, and unions. All of the pre-built join operators will join data, regardless
of whether or not the data originated from HBase or HDFS, or from any other
data source from an enterprise data warehouse to a spreadsheet. It isn’t
necessary to put all of your data on Hadoop before you can use it.

1. Actian DataFlow has three requirements to do joins:

2. There must be connectivity to the data.

3. There must be a way to identify which records join with which, a key field
of some sort that matches up (data must match, but field names do not
have to).

There must be a DataFlow reader operator that can feed the data to the join
operator.

Configuration for the join operators is pretty straightforward, and completely
independent of the source type of the data.

 15

Since the data flow is optimized in a “just in time” manner, there is no need to
estimate memory cache size needed, and hope that it isn’t exceeded. Exactly
the right amount of memory will be allocated at runtime.

This provides the capacity to enhance data with geo codes from lookup tables
or verify and standardize addresses with third-party address databases. Data
about cumulative website clicks on Hadoop by a user can be combined with
that person’s transaction history from a data warehouse. The possibilities are
endless.

Fuzzy matching to weed out duplicates

Of course, the moment you start merging multiple versions of data from
different sources, you have the problem of duplicate data. Actian uses powerful
fuzzy matching capabilities to compare, discover, cluster and weed out
duplicates. This compute intensive task is another aspect of data analysis that is
accelerated by the Actian Dataflow processing speed advantages.

Once the workflow designer indicates the fields to be compared and the
comparison weight of each field, a threshold is set for certainty that the records
are duplicates. For example, if the math indicates an 85% probability that two
records are identical, then one is automatically discarded.

Data Transformation

The next problem faced when combining multiple data sets for enhancement is
that data formats are rarely compatible, and never just naturally in the format
that is needed for the final desired output.

Actian has a decades long history in ETL and data management (previously
Pervasive, and Data Junction before that). Because of that deep understanding
of the difficulties inherent in integrating heterogeneous data, a very extensive
list of transformation operators has been pre-built into Actian DataFlow.
Aggregation, de-duplication, sorting, and joining have been previously
mentioned. Operators for filtering, sampling, date manipulation, deriving new
fields, normalizing values, data type conversions, field parsing, etc are all built in
as well. There is a lot of power in these operators, but they’re nothing new.
Essentially, the capabilities of any good ETL tool are included in the software.

What is new and particularly useful for big data management needs is that all of
these operators are built on the DataFlow framework, and therefore are
automatically optimized to run in highly parallel distributed fashion directly on
the cluster. Data transformation occurs on the cluster where the data sits. It is
not necessary to move the data out of Hadoop, then make the necessary
transformations in a single-threaded, aka slow, environment. Nor is this a clunky

 16

MapReduce code generator tacked onto a normally single-threaded ETL tool.

DataFlow is thread-parallel at its base, and this makes it inherently more
efficient than process-based parallelism such as MapReduce, even when
optimized by a skilled MapReduce coder. It is head and shoulders more efficient
than machine-generated MapReduce code.

Data Profiling and Cleansing

The first purpose the DataFlow framework was applied to was the compute-
intensive task of profiling data, detecting statistics such as means and ranges, as
well as detecting distinct values, missing values, and testing against a variety of
business rules. This data assessment is often the first step before corrective
cleansing can be implemented. Even on small datasets, it has been known to
bog down standard hardware and software systems.

Pre-built operators in Actian DataFlow explore, analyze and summarize data
quality at unmatched speed, identifying up front what data cleansing needs to
happen. The transformation operators then enable high speed remediation of
any issues found.

This is especially useful if you have merged multiple data sets, since you can
then assess and remediate the health of the resulting dataset at the same level
of speed that it was created.

Analytics on Hadoop

Once all of the various types of data that you intend to analyze have been
joined, grouped, sorted, transformed, de-duped, enhanced and cleansed, it’s
time to do some analytics. Building advanced complex parallel distributed
analytics algorithms is no small task. Actian has taken care of a great deal of that
for you by, again, pre-building high speed data flow style distributed versions of
the most common analytics algorithms.

These work just like the data preparation operators, drag them onto the canvas,
double-click, and configure properties. The properties to configure will vary
according to the analytics algorithm. For example, the “FP-Growth” operator for
market basket analysis asks for the transaction identifier field, the item identifier
field, the K value, and the minimum levels of support and confidence.

The list of pre-built operators in Actian DataFlow is fairly extensive and growing
rapidly. New operators are added every few weeks by the Actian development
team. (See Appendix I for a snapshot of operators.)

 17

Analyze ALL types of data

Context is what you gain when you can combine data from several sources and
analyze all the types of data available to you.

In many current enterprise analytic architectures, Hadoop data is filtered,
aggregated, and distilled down to a tiny fraction of its original size, removing
most of the valuable detail, then that small fraction is analyzed, either in a data
warehouse, or an analytics specific database. In some cases, only the Hadoop
data is analyzed. In some cases, the Hadoop data and other enterprise data are
analyzed separately. In either case, segregating data is never the best way to
extract answers and understanding from it.

Joining datasets on Hadoop to get these advantages is not only possible with
Actian DataFlow, it’s no more difficult than joining any other data sets in an
average ETL tool.

Example: Putting a particular customer’s website click stream data in the
context of their past transactional purchase history will give you a far better
understanding of what next best offer advertisement type that customer is likely
to respond to than analyzing either one of those two datasets individually.
Adding in some geo data might refine the offers enough to improve ad
response even further.

Bypass choke points in the analytic cycle

“Data analytics is not an activity. Data analytics is a
multi-disciplinary end-to-end process.”

– Robin Bloor, The Bloor Group

Developing analytics isn’t a one and done kind of project. There is a multi-step
process involved in bringing an analytics project from the first stages of “What
do you want to know?” to “Here is the answer and a recommendation for what
action to take.”

Different people break up the process in different ways, but we prefer to use the
Five Analytic Latencies that Dr. Robin Bloor outlined in the white paper,
“Minimizing the Five Latencies in the Analytics Process.” These are: Prepare,
Develop, Deploy, Execute, Audit.

 18

Actian DataFlow offers technical advantages that shorten the time at each stage
in the process, resulting in a cumulative reduction in time to value that is
unmatched.

Prepare

Data preparation often eats up as much as 80% of the total time spent on any
analytics project. In the earlier section on enhancing data with multiple data
sources, there is considerable detail concerning data preparation operators in
Actian DataFlow. The advantage of these operators in the area of shortening the
whole process is two-fold.

First, the operators are designed to operate in a parallel fashion in a distributed
architecture. This means that the execution speed of data preparation tasks is
vastly accelerated, compared to traditional ETL applications, and even
compared to MapReduce, Pig, or Hive code. (See earlier illustration comparing
DataFlow with Pig execution times on standard queries.)

The second advantage is even more significant, because it saves not just
machine time, but the more valuable time of humans. Actian DataFlow
operators drop into the Eclipse-based KNIME data mining platform. This
platform consistently rates highest in the Rexer Analytics surveys on consumer
satisfaction for open source data mining platforms, particularly in measures of
usability. Using Actian DataFlow operators in the KNIME interface means that
data preparation workflows can be created very rapidly, even by non-
programmers.

“Actian DataFlow holds a lot of appeal for analytics gurus looking for both
design-time and execution-time productivity. The KNIME workflow

environment is very accessible and easy to use, and the combined KNIME
and Actian DataFlow nodes and operators provide a lot of flexibility with

pre-existing building blocks for both ETL and analytics.

The highly parallel Actian execution engine now makes it practical to apply
the beauty of the KNIME workflow environment to large datasets that

would have been difficult or even impossible to tackle otherwise."
– Dean Abbott, President, Abbott Analytics

Anyone with enough understanding of data to operate a standard, GUI-based
ETL tool can now do their own cluster data preparation tasks. This saves
considerable friction between IT and line of business users and data analysts. If,
for the sake of improving an analytics model, an additional data column is
suddenly needed, a particular missing value needs a default, negative values
need to be set to absolute, etc. the analyst can make that modification in the

 19

workflow themselves, rather than waiting for IT to implement it.

Develop

The advantages of using Actian DataFlow vastly increase when the normal
“develop, test and refine” iteration cycle of analytics models is considered. A data
analyst no longer spends half their day reading email and waiting for their
analysis model to finish executing so they can check it, make a minor tweak,
and run it again.

And, with the visual interface, those minor tweaks take a few mouse clicks. That
also saves a great deal of the analyst’s time.

If the person developing the analytics workflow prefers to have the greater level
of control and subtlety of writing code directly, rather than using an interface,
the underlying Actian DataFlow framework has a friendly API that will work with
any JVM-based language: Java, Scala, Jython, Groovy, whatever you like. It also
has a simple JavaScript interface. Regardless of what language you choose, the
framework will still handle all the parallelization tasks. You simply need to build
a directed graph with the instructions of what you want done, the framework
will handle getting it all done optimally, regardless of thread or core availability
at time of execution.

Deploy

The deployment step in the process appears to be, anecdotally from the
customers and Hadoop users we at Actian have spoken to, the biggest hurdle
enterprises face. Production deployment is the choke point that stops many
projects flat, and delays others for months, or even years. The reasons for this
problem are clear.

First, in many cases, analytics are designed by data analysts. Whether you call
them statisticians or data scientists or whatever, they are specialists in the
analysis of data. They often build their analytics models in R, Python or SAS, or
some other analytics package. They’ve tested it out using a small sample of data
provided to them by their IT departments.

That model is then passed to another person or team. It is this second team’s
job to modify the model to function in a distributed environment and connect it
to all the data needed to actually produce results. This team is generally expert
in parallel programming, however, parallelizing a non-parallel analytics workflow
and algorithm is not a simple task.

After some weeks or months of programming, the MapReduce developer then
tests out the model on the Hadoop cluster and gets back … gibberish.

 20

Something has been lost in the translation. Perhaps the parallel version of the
analytics algorithm doesn’t work the same as the single-threaded version did.
Perhaps the small sample that the model was tested on was not a sufficiently
representative sample of the real data.

Regardless of the reason, the end result is that the Hadoop developer and the
data analyst have to go back and forth multiple times to try to get the
distributed version of the workflow to function in the way that the data analyst
expected it to. It can be a very long-drawn-out process, and in the end, it can
even be completely unsuccessful. Or, it may simply become a moot point, since
business needs move rapidly. By the time the answer is finally available, the
business people may want to ask completely different questions.

Actian DataFlow bypasses all of that. As has already been mentioned, Actian’s
operators are all designed to work in parallel and distributed environments from
the beginning. Once the software is installed on the cluster, DataFlow workflows
can be developed and tested on a desktop, or directly on the Hadoop cluster
itself, by changing a single setting in the user interface. It literally takes seconds.
And if you have two Hadoop clusters, one for testing, one for production, the
same thing applies. Just change the setting from the test environment to point
to the new production environment. Done.

Instead of being the biggest choke point, production deployment with Actian
DataFlow is the quickest and easiest part of the process.

Execute

Enough has already been said about Actian DataFlow execution speed. It takes
advantage of as much compute power as is available on any hardware platform
to squeeze the best possible execution speed out of that hardware.

See the earlier section “Automate execution optimization” for more details.

Audit

Auditing production models can be the biggest key to continuing to get
significant lift from those models over time.

“You can’t simply deploy a static model. Signals and
patterns change. Models must constantly improve,

re-learn and update to keep their value.”
– Laks Srinivisan, Opera Solutions

 21

Having a self-documented workflow in an easy to modify interface is extremely
helpful when coming back to a model that the analyst hasn’t looked at or
thought about in months or even years.

When the machine learning algorithm needs to be re-trained, the workflow
tweaked, tested, iterated and tweaked again, then the whole thing needs to be
re-deployed, all of the same time savings that were mentioned in the previous
sections once again come into play.

ALL the way from end to end

Agility is the main benefit a company gains from a shorter end-to-end analytics
cycle.

The time between identifying an analytics need and fulfilling it has to be short
enough to actually answer that need. Business needs change so quickly that a 3-
month, 6-month, or even 1-year cycle, as is not uncommon in Hadoop
implementations, simply isn’t practical. The benefits of a shorter end-to-end
analytics cycle don’t just come into play once. Every time a new analytics need is
identified and every time an existing model needs to be updated, this overall
time-to-value advantage shows up again. These time savings are cumulative and
translate to real dollar benefits.

Example: As a demonstration for a potential client, a KNIME representative built
an Actian DataFlow workflow and deployed it on a Hadoop cluster in under 20
minutes. This workflow duplicated one that a team of MapReduce coders had
spent more than two weeks coding. The output from the two was nearly
identical, except that the predictive results were slightly more accurate from the
KNIME job.

Example 2: One of the largest data science consultancy firms in the world chose
to use the Actian DataFlow framework directly, rather than through the
interface, because they had a wide variety of skilled programmers who were also
statisticians in-house. DataFlow improved execution time on a particular risk
analysis solution by 90%, reducing their customers’ exposure time from 3 days
to a few hours. That was enough for them to buy the software. The development
time reduction due to the framework automatically handling the parallelization
aspects was a nice bonus. But the true benefits to their company appeared
when it came time to deploy the solution to many customers, and to deploy
other solutions as well that had been built on the same DataFlow framework.
Before, using older styles of development and deployment, it took an average of
2-3 days to deploy a new analytics solution for each client. Now, it takes an
average of 2 hours. This has allowed them to accept far more clients while still
meeting their SLA’s, and significantly increased their overall corporate revenue.

 22

Be a good enterprise citizen

“Man plus machine is at the heart of good analytics.
Whatever you make must be usable by people in the

right context.”
– Laks Srinivisan, Opera Solutions

Platform agnostic

Actian DataFlow is software that is platform agnostic. In this case, the word
platform applies to hardware, operating systems, and Hadoop distributions.

DataFlow will function optimally on a laptop, a desktop, an industry standard
server, a high-performance server, or a cluster of any size made up of nodes of
any level of power.

DataFlow runs on any operating system with a JVM, including Windows, Mac,
Linux, and various flavors of UNIX.

Dataflow is YARN certified for Hortonworks, and Cloudera certified as well. It will
function on any Hadoop distribution: Apache, MapR, IBM BigInsights, etc.
DataFlow includes its own cluster management capabilities but will use the
YARN cluster resource manager instead with a simple settings change.

 23

Actian Analytics Platform

Actian DataFlow is one component of the Actian Analytics Platform, which also
includes Actian Vector, the world’s fastest single server analytics database. The
real value of the platform shows up when both pieces are combined.

“Opera Solutions is literally betting our business on
Actian. We’ve done that with Dataflow and Vector.”

– Laks Srinivisan, Opera Solutions

Actian DataFlow can be used stand-alone to do data preparation, high
performance ETL and analytics directly on Hadoop. It can also be used for high
performance data integration and data quality projects.

Actian DataFlow is ideal for situations where data extraction, preparation,
merging and enhancement on Hadoop feeds into the Actian Vector analytic
databases.

Hybrid implementations where some scheduled analytics or data mining is
done on Hadoop with DataFlow and other, more ad hoc, fast-response analytics
are done on Vector are also common.

 24

Enterprise architectures

Actian DataFlow integrates directly with a wide variety of data sources, and
through Actian DataConnect to hundreds more. DataFlow can become the
backbone of high speed, large data management. It can connect Hadoop with
the rest of the enterprise software, making the yellow elephant in the room no
longer a big, isolated silo on the edge of the integrated enterprise.

Actian DataFlow is also used in many large scale ETL and data quality projects
that don’t even involve Hadoop. Being platform agnostic means that DataFlow
can run anywhere it’s needed.

Other data preparation and analytics tools

One of the distinct advantages of the Actian DataFlow software is that it “works
and plays well with others.” If there is a particularly brilliant analytics algorithm
that brings value to a business that was written in R and doesn’t translate well,
that R algorithm can be dropped directly into a DataFlow workflow, allowing
DataFlow’s high-speed data preparation operators to extract, enhance,
aggregate and distill the data as needed before feeding it into the algorithm.

Similarly, many enterprise analytics have run on SAS for a lot of years. Those
analytics have been refined and refined until re-building them from scratch
would be a nightmare. But replacing the SAS ETL with Actian DataFlow can
vastly improve performance on those old stand-bys.

Example: One Actian customer took 48 days in SAS to do a fraud detection
analysis. 47 ½ of those days were data preparation. Only a few hours were
actually spent on the key analytics. Actian DataFlow replaced the data
preparation aspect, fed the clean data into SAS analytics, and now that
customer catches fraudulent transactions in less than a day, not 48 days.

Actian DataFlow reads and writes PMML to both import and export analytics
specifications from other software like SAS, IBM SPSS, Weka, Zementis, etc.

Actian integrates with data visualization software such as Microstrategy, Qlik,
Yellowfin, and Tableau. Actuate’s BIRT open source version imports right into
the same KNIME interface.

Even a complex regular expression or a snippet of Javascript code can be the
key a particular project needs. Actian DataFlow lets you drop that right into the
workflow where it’s needed and will run with it.

 25

Conclusion

“The impossible is now possible. What would you
attempt to do if you knew you could not fail?”

– Laks Srinivisan, Opera Solutions

DataFlow automatically optimizes execution on any hardware platform,
providing the best possible execution speed. DataFlow provides the ability to
merge and enhance Hadoop data with other data sources as easily as any ETL
tool merges and enhances any other data source, but far faster. It reduces the
inherent latencies at all of the steps in a normal analytics process from data
preparation through development, testing, refinement, deployment, execution,
and updating. DataFlow is completely platform agnostic. It runs on virtually any
hardware, operating system or Hadoop distribution. DataFlow is an integral part
of the Actian Analytics Platform, and integrates seamlessly with the other
essential software in the enterprise. In these ways, Actian DataFlow addresses all
of the challenges presented by Hadoop in the enterprise today.

These advantages provide corporations with the ability to analyze all of the data
for greater accuracy, analyze all types of data for greater context, and shortens
the analytics cycle all the way from end to end, for exceptional business agility.

There are undoubtedly many other advantages not listed in this paper to being
able to crunch as much data as desired, as many different types of data as
desired, whenever it is desired. Many of those advantages haven’t even been
thought of yet. Statisticians have been dealing with the limitations of their
software’s data crunching capabilities for decades, well before the term “big
data” became popular. To a large extent, the concept that you can only analyze
so much data is built into every aspect of a statistician’s daily life.

Only when the people who deal with data on a regular basis are set free of those
limitations will we truly begin to see what gifted data scientists can really do.
This freedom from constraints, and the new possibilities it opens up, is the
biggest value that Actian DataFlow offers. This benefit can’t be concretely
counted, but Actian believes that in time, this new freedom will revolutionize
data analysis.

 26

Appendix I

Operator List

The list of pre-built operators in Actian DataFlow is fairly extensive and growing
rapidly. New operators are added every few weeks by the Actian development
team.

The operator snapshot illustration below should give you a general idea of the
pre-built operators available in the user interface version with KNIME. If you
don’t see a specific piece of functionality, don’t assume that it doesn’t exist in
Actian DataFlow. Some DataFlow capabilities are not in the user interface, and
by the time you read this, the list will be incomplete.

 27

Appendix II

Comparing DataFlow and Spark (and Tez, Pig, Hive, Mahout
and Cascading)

Apache Spark is an open source project originally developed in the AMPLab at
UC Berkeley to improve data processing speed on Hadoop. This section will
compare and contrast the two technologies.

Spark, like Actian DataFlow, uses a directed acyclic graph execution engine that
does just in time workflow parallelization and optimization. Also, like DataFlow,
Spark is not tied to the inflexible map and reduce programming paradigm. The
two frameworks have, in many ways, very similar strategies for speeding up
processing of data on Hadoop clusters.

Both Spark and DataFlow do not use MapReduce in any way. Both will coexist
peacefully with MapReduce programs (and each other) on the same cluster and
share resources using the YARN resource manager. Both will vastly speed data
processing over any strategy that does rely on MapReduce under the covers,
such as Hive, Pig, Mahout or Cascading, since they are not tied to the highly
restrictive Map, Sort and Shuffle, Reduce paradigm. Both DataFlow and Spark
are efficient ways to do high speed data processing and analytics on clusters.

Aside from DataFlow being proprietary software, and Spark being open source,
DataFlow and Spark have slightly different strategies for attaining that high
execution speed. DataFlow, as explained earlier in this paper, uses pipeline
parallelism as its main strategy for high speed execution. Spark uses an entirely
in-memory processing paradigm.

Spark starts by reading all data into RAM in a data store called a Resilient
Distributed Dataset (RDD). This in-memory dataset can then be queried or read
repeatedly, which is extremely useful, particularly for certain machine learning
algorithms that require iteratively reading over a dataset multiple times.

The RDD concept seeks to solve the traditional in-memory problem of fault
tolerance. Normally, if the machine holding an in-memory data store fails, all
information is lost, since the RAM is lost. Spark writes a lineage model to disk
that tracks where the data came from, and all processing steps that have been
done to it. In this way, the RDD can be re-generated in case of a fault. So, unlike
most in-memory processing strategies, Spark is reasonably fault tolerant.

Tez is another project that uses an in-memory strategy and skips many of the
limiting programming restrictions of MapReduce to speed up processing.

 28

However, it does not have the concept of the RDD. Therefore, it is not fault
tolerant, and it cannot do the high-speed iterative processing that makes Spark
so advantageous, particularly for machine learning and predictive algorithms.

One difference between Spark and DataFlow is in the way they do sorting, a
highly compute intensive operation, and often the slowest point in any
workflow. When a sort is done on data, DataFlow records to disk the new
dataset with the data sorted, and it will remain sorted for the rest of the
workflow and beyond. Spark and DataFlow can do roughly the same level of
high speed sorting, but Spark does not retain the information in the new sorted
form, so it may be necessary to sort data repeatedly.

Another difference is the lack of pipeline parallelism in Spark. Because of this,
only one function can be executed in Spark at a time. That function must be
completed over the entire dataset before the next function can begin. Pipeline
parallelism allows many functions to execute simultaneously. By the time all
data has been read into memory, and Spark can start processing it, DataFlow
has already completed processing most of the data.

The main disadvantage of Spark is that it still has the limitation of any in-
memory processing paradigm in that it bumps against limits in RAM availability.
The entire data set is read into RAM in the form of an RDD first. When a data
processing step is done that alters the data, a new RDD is created. Having
multiple copies of the RDD in memory can become particularly RAM intensive,
especially if many alteration steps are needed. Since only small amounts of data
are in the DataFlow memory pipeline at a time, DataFlow does not tend to
overwhelm RAM resources. Spark is smarter than many in-memory paradigms
in that it can spill some of its processing to disk when RAM limits are reached,
and therefore not cause a crash or freeze, or even a processing failure, but in
that case, much of the processing speed advantage is lost.

Execution speed in general tends to be roughly equal between Spark and
DataFlow. Depending on what particular task is being done, Spark may be
faster, or DataFlow may be faster. An example of a workflow where DataFlow
would tend to execute more quickly would be one that required sorted data to
be accessed multiple times, or one that had a lot of data processing steps. An
example of a workflow where Spark might execute more quickly would be one
where the full dataset needed to be read multiple times.

Another disadvantage of Spark is that, like MapReduce, Spark requires very
specialized skills to use. It is essentially a Scala programming framework. Python
and Java API’s are available, but these API’s tend to trail behind the main Scala
API. In addition, not many pre-built operators for Spark exist at this time
(although that is changing). This means that Spark requires another kind of
specialized skillset, a skilled parallel Scala programmer.

 29

Dataflow can be used by any decent Java programmer, even with no parallel
programming skills, or by anyone who can understand the data and processing
steps needed well enough to drag, drop and configure pre-made operators in
an interface. In general, the ease of developing with Actian DataFlow,
particularly with the drag and drop interface, provides a much shorter
development time than Spark, minutes as opposed to weeks or months.

When choosing a Hadoop software platform, be sure to consider not just
runtime execution speed, but the particular purpose you are likely to put that
platform to, the resources required, both human and hardware, and the long-
term efficiency of the entire end-to-end analytics process.

About Actian – Activate your Data™

Actian, the hybrid data management, analytics and integration company,
delivers data as a competitive advantage to thousands of customers worldwide.
Through the deployment of innovative hybrid data technologies and solutions
Actian ensures that business critical systems can transact and integrate at their
very best – on premise, in the cloud or both. Thousands of forward-thinking
organizations around the globe trust Actian to help them solve the toughest
data challenges to transform how they run their businesses, today and in the
future. For more, visit https://www.actian.com.

https://www.actian.com/
https://www.actian.com/

2300 Geng Rd, Suite 150, Palo Alto, CA 94303
+1 888 446 4737 [Toll Free] | +1 650 587 5500
[Tel]
© 2018 Actian Corporation. Actian is a trademark of Actian Corporation and its
subsidiaries. All other trademarks, trade names, service marks, and logos referenced
herein belong to their respective companies. (WP-0818)

https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://twitter.com/ActianCorp
https://www.facebook.com/actiancorp
https://plus.google.com/+Actian/
https://www.linkedin.com/company/actian-corporation
https://www.youtube.com/user/ActianCorporation
https://www.youtube.com/user/ActianCorporation

